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Hooke’s Law 

• For one dimensional simple harmonic motion force law is 

 

• Corresponding potential function 

 

 

• Significance 

– Near an equilibrium Fx = ‒dU/dx = 0, so a quadratic 

approximation is the approximation to the potential 

with leading significance if k ≠ 0 by Taylor’s theorem 

– If k > 0, the motion exhibits, and is the quintessential 

example of, strong stability (motion under a 

perturbation stays near the motion without the 

perturbation) 
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Simple Harmonic Motion 

• Energy Diagram 

 

 

 

 

 

 

 

 

 

• The amplitude of the motion is denoted by A 

 

 



                          Undergraduate Classical Mechanics Spring 2017 

Solutions for Simple Harmonic Motion 

• Equation of motion 

 

 

• ω = 2π f is the angular frequency of the oscillation 

• Period of oscillation is τ = 2π / ω 

• General solution 

 

• Equation is linear, and so superposition applies. Another way to 

write the general solution is 

 

 

 

 

• C+ and C‒ in general complex, and need              for a real solution 
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Relation Between Expansion Coefficients 

• Equating the two forms of the solution 

 

 

 

 

• Or going in the other direction 

 

 

• In other words 

 

 

• Complex C+ (C‒) allows one to handle the oscillation phase! 
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Solution in Amplitude-Phase Form 

• Suppose we wish to write the general solution in amplitude-

phase form 

 

 

 

 

• Expression with complex representation even easier! 

 

 

 

   

   

     

2 22

1 1

4

tan Im / Re tan Im / Re

2Re Re

                               Re

i t i t

c s

i i t

A C C C C C C

C C C C

x t C e B iB e

Ae e

 

 



     

 

   





    

  

    

   

 

 2 2 2 2 2 2

cos sin cos

cos cos sin sin

cos sin

tan /

c s

c s

s c

B t B t A t

A t A t

B B A A

B B

   

   

 



  

 

   





                          Undergraduate Classical Mechanics Spring 2017 

Solution in Pictures 

 

 

 

 

 

 

• Solution in amplitude phase form 

 

 

 

 

• Computing the phase shift 
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Bottle in Bucket Example 
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Energy Considerations 

• Conserved total energy 
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2D Isotropic Oscillator 

• Oscillations in two directions at same frequency 
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An-isotropic oscillations 

• Lissajous figures when motion repeats itself (periodic) 
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Damped Motion 

• Add a friction force (linear drag) 

 

 

 

 

 

• ω0 is the frequency without damping 

• Solution ansatz to linear ordinary differential equation 

(LCR circuit in electrical engineering) 
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• For solutions to homogeneous equation 

 

 

 

 

 

• If  β = 0 (undamped) reduces to case before 

 

• If β << ω0  (called the underdamped case), the square root 

is real, the angular frequency is adjusted to 

 

and the oscillation damps with exponential damping rate β 

 

 

 

 

 

 

 

Homogeneous Solution 
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• If β >> ω0  (called the overdamped case), the square root is 

imaginary, the damping has two rates and no oscillation 

 

 

• If β = ω0  (called the critically damped case), the square 

root vanishes. Need another method to determine second 

solution 

 

 

 

 

• Motion dies out most quickly when the damping is critical 

Over Damping and Critical Damping 
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Solutions Qualitatively 


